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Abstract—Non-scaling Stochastic Computing adder and sub-
tracter architectures are introduced. They are modeled using
Markov Chains to obtain important statistical properties en-
abling their design optimization. To demonstrate their efficacy,
they are used to realize a stochastic computing-based image
sharpening filter which is simulated in MATLAB and Synopsys.
The filter’s computational efficiency is showcased with standard
image processing metrics while its hardware resources are
compared to those of the standard binary filter, highlighting the
advantages of the proposed approach.

Index Terms—Stochastic Computing, Stochastic Non-Scaling
Adder, Stochastic Image Sharpening Filter

I. INTRODUCTION

Stochastic Computing (SC) is an unconventional computing
technique where binary-value numbers are encoded in the form
of finite-length stochastic sequences of 0s and 1s, {Xn}Nn=1

[1]–[3]. The encoding is typically done using a Stochastic
Number Generator (SNG); on each clock cycle, the k-bit bi-
nary number is compared to the output of a k-bit random num-
ber source for a total of N = 2k clock cycles. The N -bit output
sequence {Xn}Nn=1 is assumed to be formed of independent
and identically distributed (i.i.d.) random variables and the
expected value of the time-average X̃N = (

∑N
n=1 Xn)/N to

be equal to the original binary-value number. It belongs to
[0, 1] (unipolar format) and can be extended to [−1, 1] (bipolar
format) using the mapping X 7→ 2X−1. For convenience we
also define X = Pr(Xn = 1).

SC’s bit-serial processing allows for the realization of the
fundamental arithmetic operations, as well as complex func-
tions using a few standard and minimal logic cells. Moreover,
its probabilistic nature makes it resilient to soft-errors. These
properties are attractive for applications with massive paral-
lelism needs which are (small)-error tolerant such as Neural
Networks [4]–[7] and Image Processing [8], [9].

A standard operation required in the SC-based DSP cores
is that of the multiply-and-add and although SC multiplication
is a trivial process using a single logic gate, the SC addition
can be challenging [10]. The standard way to realize an adder
in SC is with a MUX along with a random number source
which operates as its select signal. This scales the result of the
stochastic addition to the SC’s number representation range,
according to the MUX’s number of inputs. In this direction,
scaling adders have been proposed to avoid the additional
hardware taxing due to the random number source and to
increase the accuracy of the computations [11], [12].

When multiple cascaded computations are required, scaled
adders do not favor them, especially when other operations
follow. Non-scaling adders have also been explored [13], [14],
but, existing approaches operate with different SC number
representation formats than the standard unipolar and bipolar
ones, thereby imposing design constraints to the other con-
nected computational blocks.

Motivated by the former design challenges, in this work
we present a SC non-scaling adder architecture. Our approach
deviates from existing ones in the sense that it does not scale
the result of addition, operates with random input sequences
and is compatible with the standard SC number representation
formats. As such, cascaded computations can be realized
efficiently, with flexibility in the SC design space.

In the following section, the proposed non-scaling adder ar-
chitecture is presented, along with its modeling using Markov
Chains and the derivation of the subtracter’s architecture based
on the adder. In Section III, important design guidelines
to select the register’s size are shown. In Section IV, the
performance of the proposed non-scaling adder & subtracter
in computational accuracy and hardware resources is shown
and is compared to several approaches from the SC literature.
Section V demonstrates the proposed adder’s & subtracter’s
cascaded computations with the realization of an image sharp-
ening filter. Finally, Section VI concludes our work.

II. NON-SCALING STOCHASTIC ADDER

A. High-Level Architecture

<

Fig. 1. Proposed stochastic non-scaling adder architecture. Tn is the m-bit
register’s state, updated according to (1).

Fig. 1 shows the proposed non-scaling adder architecture,
where its input sequences {Xn}, {Yn} are assumed to be i.i.d.
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and {Zn} is its output; n = 1, 2, . . . , N is the time index. Its
operation is based on the saturating up & down counting of a
m-bit register within {0, 1, 2, ...,M − 1} states, where M =
2m. The saturating behavior implies that states 0 and M −
1 cannot be exceeded. The adder implements the following
iteration: A) if Xn = Yn = 1, then Tn = Tn−1 +1 if Tn−1 <
M − 1 and Tn = Tn−1 otherwise, B) if Xn = Yn = 0, then
Tn = Tn−1 − 1 if Tn−1 > 0 and Tn = Tn−1 otherwise, and
C) Tn = Tn−1 if Xn ̸= Yn. The iteration is expressed as

Tn = max
{
0,min

{
Tn−1 +XnYn−XnY n,M−1

}}
, (1)

considering Xn, Yn ∈ {0, 1} as real numbers. The output is
given by

Zn = OR(Xn, Yn, Tn−1 > 0). (2)

Finally the register’s initial state is assumed to be T0 = 0.

B. Markov Chain Modeling and First-Order Statistics

  

    

Fig. 2. Markov Chain model of the proposed non-scaling adder, in the form
of a stochastic Moore FSM. Transition probabilities A1, A2 and A3 are given
by (3).

The operation of the proposed stochastic adder is described
by the Markov Chain (MC) model of Fig. 2. The register’s
zero value, is represented by two different states in the model,
namely 0A and 0B , whereas states 1, 2, . . . ,M − 1 represent
the corresponding values of the register. This allows for its
behavior to be expressed as a stochastic Moore FSM, relating
the output Zn to the current state only.

The MC’s current state Sn can take values within the set
S ≜ {0A, 0B , 1, 2, ...,M − 1} of size M + 1. Assuming that
the MC’s state is Sn−1 at time index n−1, then the transition
to the next state Sn is governed by the transition probabilities

A1 =Pr(Xn = 0)Pr(Yn = 0)

A2 =Pr(Xn = 1) + Pr(Yn = 1)− 2Pr(Xn = 1)Pr(Yn = 1)

A3 =Pr(Xn = 1)Pr(Yn = 1). (3)

To analyze the adder’s stochastic behavior we consider the
(M + 1)× (M + 1) transition probability matrix of its MC

model with state ordering (0A, 0B , 1, 2, ...,M−1). It is defined
as W =

[
Pr(Sn+1 = sb|Sn = sa)

]
and expressed as

W =



A1 A2 A3 . . . . . . 0
A1 A2 A3 . . . . . . 0
0 A1 A2 A3 . . . 0
...

. . . . . . . . . . . .
...

...
. . . 0 A1 A2 A3

0 . . . . . . 0 A1 A2 +A3


. (4)

The state’s Sn probability distribution vector, is calculated as

πn = π0W
n ∈ [0, 1]M+1, (5)

where π0 =
[
1, 0, 0, ...0

]
∈ [0, 1]M+1, is the initial distribution

vector, representing the register’s starting state S0 = 0A.
Proceeding to the first-order statistics, we leverage the fact

that Zn depends only on the state Sn, which is zero if and
only if Sn = 0A. Therefore Zn’s expected value is

E[Zn] =Pr(Zn = 1) = 1−Pr(Zn = 0) = 1− πne
T
1 , (6)

where we used (5) and ei =
[
0, ...0, 1, 0, .., 0

]
∈ RM+1 is the

i-th standard vector. The average value of the output N -bit
sequence Z̃N =

(∑N
n=1 Zn

)
/N , has expected value

E[Z̃N ] =
1

N

N∑
n=1

E[Zn] = 1− 1

N
π0

(
N∑

n=1

Wn

)
eT1 . (7)

C. Non-scaling Stochastic Subtracter

<

Fig. 3. Proposed stochastic non-scaling subtracter architecture. It consists of
the proposed adder in Fig. 1 with two NOT gates.

A stochastic subtracter can also be obtained from the
proposed adder by only adding two NOT gates inverting one
of its inputs and its output. It’s architecture is shown in Fig. 3.
Since the adder’s operation implies Z̃N ≈ 1−X+Y , then we
have C̃N = 1−Z̃N ≈ X−Y . Note that the proposed subtracter
operates in the range [0, 1] implying that X ≥ Y . The MC
model of the subtracter and the corresponding analysis follow
closely those of the adder’s.

III. REGISTER’S SIZE DESIGN GUIDELINES

The proposed adder’s counting process is constrained by the
m-bit register’s finite size. A small m may result in significant
percentage of ignored ones in the input sequences, due to
overflow, impacting the adder’s output accuracy. On the other
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Fig. 4. Markov Chain overflow model of the proposed non-scaling adder with
absorbing state M . Transition probabilities A1, A2 and A3 are given by (3).

hand, an unnecessarily large m will tax power and area. It is
therefore important to derive guidelines for the register’s size
selection in order to achieve overall design optimization.

Consider the MC model of Fig. 2 and suppose that its
current state is Sn−1 = M − 1. If Xn = Yn = 1, then the
next state is also Sn = M − 1. A logic one is outputted, but,
the second 1 is ignored since M − 1 is the last available state
of the counter; implying an overflow.

The MC model in Fig. 2 does not model overflow. To do
so the extended MC model in Fig. 4 can be used. Its sole
difference is an extra absorbing state M , indicating that an
overflow has occurred.

Assuming the state ordering (0A, 0B , , 1 . . . ,M − 1,M)
containing the extra state M , the transition probability matrix
Ŵ ∈ [0, 1](M+2)×(M+2) is

Ŵ =



A1 A2 A3 . . . . . . . . . 0
A1 A2 A3 . . . . . . . . . 0
0 A1 A2 A3 . . . . . . 0

0
. . . . . . . . . . . . . . . 0

... . . . 0 A1 A2 A3 0

... . . . . . . 0 A1 A2 A3

0 . . . . . . . . . . . . 0 1


. (8)

Decomposing the matrix Ŵ into the form

Ŵ =

[
W̃ R
0 1

]
, (9)

then the fundamental matrix F of an absorbing MC, [15], is

F = (I − W̃ )−1 ∈ [0, 1](M+1)×(M+1). (10)

Using matrix F one can calculate the expected number of
transitions before reaching the (only) absorbing state, M , as

N̂ = π0F1, (11)

where π0 is the initial distribution vector and 1 is the column
vector of M + 1 ones.

The expected number of transitions N̂ before the first
overflow in used as a guideline to select the total number
of states M and hence the register’s size m. Note that N̂
is a function of X , Y and M = 2m, i.e., defining the set
XY = {(x, y) ∈ [0, 1]

2 | x+ y ≤ 1}, it is N̂ : XY ×N → N,
where N = {1, 2, 3, ...}. The register’s size should be selected

such that N̂ is always larger or equal to a multiple of the input
sequences’ length N , i.e.

m̂ = min
{
m ∈ N | min

(x,y)∈XY
N̂(x, y, 2m) ≥ ρN

}
, (12)

where here we choose ρ = 1. We know that m̂ always exists
since N̂ → ∞ as m → ∞. The register’s size m̂ for different
values of N are cited in Table I.

TABLE I
REGISTER SIZE m̂-BIT SATISFYING N̂ ≥ N

Sequence length N -bits 16 32 64 128 256 512 1024
Register size m̂-bits 2 2 3 3 4 4 5

IV. NON-SCALING ADDER’S & SUBTRACTER’S
PERFORMANCE

A. Computational Accuracy Comparison

The computational accuracy of the proposed adder is mea-
sured using the Mean Absolute Error (MAE). It is defined
as zerror = E|(X + Y ) − Z̃N |, where (X,Y ) ∈ XY and
similarly for the subtracter considering that X − Y ≥ 0.
The MAE is estimated numerically using MATLAB: First, a
finite subset of XY is created by randomly selecting pairs
(X,Y ) in XY , according to the uniform distribution; then
for every such pair the simulation is run 1000 times, each
with a new pair of input i.i.d. sequences {Xn}, {Yn}. The
MAE values are calculated and averaged. The experiment is
repeated for stochastic sequence lengths of N = 2k, where
k = 4, 5, . . . , 10. Note that for the MAE computation, we
have considered Sobol low-discrepancy (LD) sequences [16].

The comparison of the proposed adder’s and subtracter’s
computational efficiency to those of existing architectures in
the SC literature [11]–[14], [17] is illustrated in Fig. 5. Ac-
cording to the results, the proposed adder and the non-scaling
adder in [13] result in the highest performance for sequences
with length up to N = 64-bit, but, the proposed one is slightly
better beyond N = 64. Moreover, the proposed non-scaling
adder operates with the standard SC representation format in
contrast to one in [13] which assumes a two-line encoding
(i.e. two sequences representing the magnitude and the sign
of the stochastic number). Compared to the other architectures
in [11]–[14] and the MUX approach, the proposed adder is
more suitable for cascaded computations due to its non-scaling
nature, besides its accuracy. With respect to the subtracters,
the proposed one achieves the highest computational accuracy
while allowing for cascaded computations.

B. Hardware Resources Comparison

All compared adders and subtracters were described using
Verilog HDL and then synthesized using the Synopsys Design
Compiler with the Free PDK CMOS library at 45 nm [18]. The
estimated area, average power consumption for the maximum
operating frequency, delay and energy consumption (average
power × delay product) are cited in Table II.
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Fig. 5. Mean Absolute Error comparison for stochastic adders and subtracters
with different sequence lengths N . Sobol sequences are used.

According to Table II, the proposed adder requires less
resources compared to the MUX one and the approach in
[14] which requires a random source for the select signal.
Compared to [13] the proposed architecture requires slightly
more resources when register sizes of m = 5-bit are used.
The adders in [11], [12] are intended for area & power
constrained designs, however, this does not apply to the energy,
since they require larger sequence lengths to achieve the same
computational accuracy with that of the proposed adder.

Regarding the subtracters, the proposed one requires fewer
resources when compared to the MUX and [14]. Although
the subtracter in [17] is better hardware-wise, its accuracy im-
provement is small when compared to the proposed subtracter
and is increased when additional hardware is used [17].

V. STOCHASTIC IMAGE SHARPENING FILTER

We demonstrate the efficiency of the proposed architectures
in cascaded computations with the realization of an image
sharpening filter [19]. Its operation, is described as

g(k, l) = f(k, l) + c
(
f(k, l)− w ∗ f(k, l)

)
, (13)

where f(k, l) and g(k, l) are the input and output images of
size k× l respectively, w is a weight mask and c is a constant.

To further explain the image enhancement properties of
each operation in (13), we start first with its second term.
Convolving the input image f(k, l) with a weight kernel w,
outputs a filtered version of f(k, l), determined by the kernel’s
weight values. Then, subtracting w∗f(k, l) from f(k, l) allows
to extract the ”details” of an image. The multiplication with
the constant value c, results in image sharpening for c = 1
and high-boost filtering for values c > 1. Here, we consider
c = 1. Finally, the sharpened image g(k, l) is obtained by

TABLE II
HARDWARE COMPARISON BETWEEN THE PROPOSED ARCHITECTURES

AND STATE-OF-THE-ART

Stochastic Adders & Subtracters
Register (bit) Area (µm2) Power (mW ) Delay (ns) Energy (pJ)

Proposed∗
Adder/Subtracter

m = 2 59.60 0.053

1.4

0.074
m = 3 83.49 0.077 0.108
m = 4 98.30 0.084 0.117
m = 5 112.61 0.098 0.137

[11] 22.41 0.021 0.8 0.016
[12] 54.39 0.040 1.2 0.048
[13] 92.49 0.071 1.2 0.057

MUX∗

Adder/Subtracter
Sobol seq. generator size k

k = 4 109.34 0.241

0.8

0.192
k = 5 117.32 0.272 0.216
k = 6 125.03 0.325 0.261
k = 7 140.19 0.362 0.289
k = 8 164.83 0.378 0.302
k = 9 188.54 0.440 0.352
k = 10 201.61 0.461 0.368

[14]∗
Adder/Subtracter

Sobol seq. generator size k

k = 4 113.48 0.251

0.8

0.200
k = 5 119.69 0.282 0.225
k = 6 136.24 0.330 0.264
k = 7 144.54 0.372 0.297
k = 8 164.61 0.380 0.304
k = 9 188.64 0.445 0.356
k = 10 204.75 0.466 0.372

[17] 41.76 0.063 0.8 0.050
∗ In these cases the subtracter is obtained with negligible additional hardware requirements (2 NOT gates for the proposed
adder and 1 for the rest) and their impact is insignificant in the area, power and energy consumption

adding the extracted details to the input image. Note that in the
convolution process, AND gates are used for multiplication.

Proceeding to the experimental setup, we selected a gray-
scale image assuming an 8-bit number representation for each
pixel and then we normalized their values to range [0, 1]. The
normalization is based on stochastic numbers with sequence
length N = 2k, with k = 6, . . . , 10. This also applies to the
weight values of the 3 × 3 mask w, which are selected here
to be 0.125. Note that all computations are conducted with
simulations using MATLAB and Sobol sequences.

The computational accuracy of the proposed stochastic
sharpening filter is evaluated with two metrics, the Peak
Signal-to-Noise Ratio (PSNR) in dB and the Structural Sim-
ilarity Index Measure (SSIM). In Table III, the results for
typical values of N considered are shown, while in Fig. 6 a
graphical illustration of the computations using the proposed
architectures with stochastic sequence length N = 256 and a
register of m = 4-bits is demonstrated.

TABLE III
COMPUTATIONAL ACCURACY & IMAGE QUALITY FOR THE IMAGE

SHARPENING FILTER REALIZED USING THE PROPOSED ARCHITECTURES

N = 2k 26 27 28 29 210

PSNR (dB) 31.98 33.23 34.63 34.93 34.98

SSIM 0.950 0.960 0.966 0.967 0.967

From a hardware perspective, the realization of the image
sharpening filter requires the following computations: 1) a 3×3
convolution kernel, 2) a subtraction and 3) an addition. Among
them, the convolution kernel is the largest computational block
and its implementation using the proposed stochastic adder
requires 8 adders and 9 AND gates for multiplication. For the 9
adders in total and the subtracter, a register size of m = 4-bits
is used, as it does not degrade the accuracy of computations
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Fig. 6. Image Sharpening Filter. From left to right: a) MATLAB’s Original
Image, b) MATLAB’s Image Sharpening calculation, c) Image Sharpening
Filter realized with the proposed SC architectures. Sequence length N = 256
and register size m = 4-bit.

for stochastic sequences with length N up to 1024.
To compare the hardware resources with the standard 8-bit

binary approach, we synthesized both designs using Verilog
HDL and Synopsys Design Compiler. According to the results
shown in Table IV, the advantage of the proposed approach
is that of the area occupation, which is approximately 11% of
the standard binary one’s. On the other hand, the total energy
consumed by the proposed approach is determined by N ,
which is selected according to the accuracy requirements. For
instance, for N = 27 the total energy dissipated has moderate
values equal to 142pJ . Note that since N is determined by
the sobol input sequence generators, they are not included in
Table IV, but, they can be designed efficiently according to
[16].

TABLE IV
COMPARISON OF HARDWARE RESOURCES FOR THE IMPLEMENTATION OF

THE IMAGE SHARPENING FILTER

Area (µm2) Power (mW ) Critical Path (ns) Energy (pJ)

Proposed 1,093 0.62 1.8 1.11
Binary 8-bit 9,284 2.8 7.6 21.28

VI. CONCLUSION

A non-scaling stochastic computing adder was presented. Its
stochastic operation was modeled using Markov Chains, which
allowed us to calculate its first order statistics and to provide
guidelines for its register size. A non-scaling subtracter archi-
tecture was derived by adding two not gates to the proposed
adder. Finally, the architectures’ effectiveness in cascaded
computations, were demonstrated with the implementation of a
stochastic image sharpening filter, highlighting its compactness
compared to the standard binary implementation.
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